Soal Uas Kkpi Kelas Xii
soal KKPi kelas XII- 1010 dan 84 jadikan bilangan biner ke desimal dan desimal ke biner ..
1. soal KKPi kelas XII- 1010 dan 84 jadikan bilangan biner ke desimal dan desimal ke biner ..
1010 = 2^3 + 0 + 2^1 + 0 = 10
84 : 2 = 42 sisa 0
42 : 2 = 21 sisa 0
21 : 2 = 10 sisa 1
10 : 2 = 5 sisa 0
5 : 2 = 4 sisa 1
4: 2 = 2 sisa 0
1 : 2 = 1 sisa 1
jadi = 1010100
2. ada yang punya soal UAS PPKN +jawaban tingkat Smk kelas XII ?
PETUNJUK UMUM
1. Tulis namamu di sudut kanan atas
2. Bacalah setiap soal dengan teliti.
3. Kerjakan dulu soal yang kamu anggap mudah.
4. Periksa kembali pekerjaanmu sebelum diserahkan pada Pengawas/Guru
A. Jawablah soal dibahwah ini dengan benar!
1. Menurut UUD 1945, kekuasaan yudikatif dilaksanakan oleh....
a. presiden
b. DPR
c. MA
d. MPR
e. DPR dan MPR
Jawaban: c
2. Bangsa Indonesia telah memiliki Pancasila sebagai pandangan hidupnya, hal ini berarti bahwa bangsa Indonesia....
a. bebas menentukan sikap terhadap bangsa lain di dunia
b. mempunyai pegangan dan pedoman dalam memecahkan masalah bangsa
c. tidak perlu tahu ideologi lain
d. telah menunjukkan kepada dunia akan keberhasilannya dalam berjuang melawan penjajah
e. tidak perlu menjalin kerjasama dengan negara yang pernah menjajah Indonesia
Jawaban: b
3. Pancasila menjadi norma dasar negara, maksudnya....
a. aturan pokok untuk mengatur kehidupan bagi setiap warga negara Indonesia dan lembaga-lembaga negara
b. kaidah yang berlaku untuk selama-lamanya
c. menjadi aturan dasar kemasyarakatan secara turun-temurun
Jawaban: a
3. soal kkpi kelas 10 tahun pelajaran 2016 semester 1
sip aku cobak jawab. .....
4. Soal tentang vektor kelas XII
p = (-2, -1, -3)
q = (3, -2, 1)
|p| = √[(-2)² + (-1)² + (-3)²]
= √[4+1+9]
= √14
|q| = √[(3)² + (-2)² + (1)²]
= √[9+4+1]
= √14
p · q = (-2)(3) + (-1)(-2) + (-3)(1)
= -6 + 2 - 3
= -7
misalkan α adalah sudut antar p dan q
besar sudut antara vektor p dan q adalah
p · q = |p| |q| . cos α
-7 = (√14)(√14) . cos α
-7 = 14 . cos α
cos α = -7/14
cos α = -1/2
α = 4π/6 , 8π/6
α = 120° , 240°
5. soal limit tak hinggakelas XII
[tex]Hasil~dari~ \lim_{x \to \infty} \frac{5^x}{3^x+2^x}~adalah~\boldsymbol{E.\infty}[/tex]
PEMBAHASANNilai limit dari suatu fungsi dapat kita cari dengan langsung mensubstitusikan nilai x ke dalam fungsinya. Jika hasilnya ada maka berarti itulah nilai limitnya.
[tex]\lim_{x \to c} f(x)=f(c)[/tex]
Akan tetapi jika hasil substitusi langsung menghasilkan bentuk tak tentu [tex]\frac{0}{0}~atau~\frac{\infty}{\infty}[/tex] maka harus dilakukan manipulasi aljabar atau menggunakan aturan l'hospital. Dengan menggunakan aturan l'hospital, nilai limit fungsi dapat dicari dengan rumus :
[tex]\lim_{x \to c} \frac{f(x)}{g(x)}=\frac{f'(c)}{g'(c)},~~~~dengan~f'(c),~g'(c)\neq 0[/tex]
Operasi pada limit adalah sebagai berikut :
[tex]\lim_{x \to c} f(x)=f(c)[/tex]
[tex]\lim_{x \to c} kf(x)=k\lim_{x \to c} f(x)[/tex]
[tex]\lim_{x \to c} [f(x)\pm g(x)]=\lim_{x \to c} f(x)\pm\lim_{x \to c} g(x)[/tex]
[tex]\lim_{x \to c} [f(x)\times g(x)]=\lim_{x \to c} f(x)\times\lim_{x \to c} g(x)[/tex]
[tex]\lim_{x \to c} \left [ \frac{f(x)}{g(x)} \right ]=\frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}[/tex]
[tex]\lim_{x \to c} \left [ f(x) \right ]^n=\left [ \lim_{x \to c} f(x) \right ]^n[/tex]
.
DIKETAHUI[tex]\lim_{x \to \infty} \frac{5^x}{3^x+2^x}=[/tex]
.
DITANYATentukan nilai limitnya.
.
PENYELESAIAN[tex]\lim_{x \to \infty} \frac{5^x}{3^x+2^x}= \lim_{x \to \infty} \frac{5^x}{3^x+2^x}\times\frac{\frac{1}{3^x}}{\frac{1}{3^x}}[/tex]
[tex]\lim_{x \to \infty} \frac{5^x}{3^x+2^x}= \lim_{x \to \infty} \frac{\left ( \frac{5}{3} \right )^x}{1+\left ( \frac{2}{3} \right )^x}[/tex]
Perhatikan bahwa [tex]\frac{5}{3}>0[/tex] sehingga jika kita pangkatkan dengan nilai x yang besar hasilnya akan semakin menuju ∞.
Sedangkan [tex]\frac{2}{3}< 0[/tex] sehingga jika kita pangkatkan dengan nilai x yang besar hasilnya akan semakin menuju 0.
Maka :
[tex]\lim_{x \to \infty} \frac{5^x}{3^x+2^x}=\lim_{x \to \infty} \frac{\left ( \frac{5}{3} \right )^x}{1+\left ( \frac{2}{3} \right )^x}[/tex]
[tex]\lim_{x \to \infty} \frac{5^x}{3^x+2^x}=\frac{\lim_{x \to \infty} \left ( \frac{5}{3} \right )^x}{\lim_{x \to \infty} 1+\left ( \frac{2}{3} \right )^x}[/tex]
[tex]\lim_{x \to \infty} \frac{5^x}{3^x+2^x}=\frac{\infty}{1+0}[/tex]
[tex]\lim_{x \to \infty} \frac{5^x}{3^x+2^x}=\infty[/tex]
KESIMPULAN[tex]Hasil~dari~ \lim_{x \to \infty} \frac{5^x}{3^x+2^x}~adalah~\boldsymbol{E.\infty}[/tex]
.
PELAJARI LEBIH LANJUTLimit tak hingga : https://brainly.co.id/tugas/32409886Limit tak hingga : https://brainly.co.id/tugas/28942347Limit fungsi : https://brainly.co.id/tugas/30308496.
DETAIL JAWABANKelas : 11
Mapel: Matematika
Bab : Limit Fungsi
Kode Kategorisasi: 11.2.8
Kata Kunci : limit, fungsi, tak hingga.
6. soal limitkelas XII
[tex]Nilai~dari~\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}~adalah~\boldsymbol{1}.[/tex]
PEMBAHASANNilai limit dari suatu fungsi dapat kita cari dengan langsung mensubstitusikan nilai x ke dalam fungsinya. Jika hasilnya ada maka berarti itulah nilai limitnya.
[tex]\lim_{x \to c} f(x)=f(c)[/tex]
Akan tetapi jika hasil substitusi langsung menghasilkan bentuk tak tentu [tex]\frac{0}{0}~atau~\frac{\infty}{\infty}[/tex] maka harus dilakukan manipulasi aljabar atau menggunakan aturan l'hospital. Dengan menggunakan aturan l'hospital, nilai limit fungsi dapat dicari dengan rumus :
[tex]\lim_{x \to c} \frac{f(x)}{g(x)}=\frac{f'(c)}{g'(c)},~~~~dengan~f'(c),~g'(c)\neq 0[/tex]
Operasi pada limit adalah sebagai berikut :
[tex]\lim_{x \to c} f(x)=f(c)[/tex]
[tex]\lim_{x \to c} kf(x)=k\lim_{x \to c} f(x)[/tex]
[tex]\lim_{x \to c} [f(x)\pm g(x)]=\lim_{x \to c} f(x)\pm\lim_{x \to c} g(x)[/tex]
[tex]\lim_{x \to c} [f(x)\times g(x)]=\lim_{x \to c} f(x)\times\lim_{x \to c} g(x)[/tex]
[tex]\lim_{x \to c} \left [ \frac{f(x)}{g(x)} \right ]=\frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}[/tex]
[tex]\lim_{x \to c} \left [ f(x) \right ]^n=\left [ \lim_{x \to c} f(x) \right ]^n[/tex]
Rumus untuk limit fungsi trigonometri :
[tex]\lim_{x \to 0} \frac{sinax}{bx}=\lim_{x \to 0} \frac{tanax}{bx}=\frac{a}{b}[/tex]
[tex]\lim_{x \to 0} \frac{ax}{sinbx}=\lim_{x \to 0} \frac{ax}{tanbx}=\frac{a}{b}[/tex]
[tex]\lim_{x \to a} \frac{sin(x-a)}{(x-a)}=\lim_{x \to a} \frac{tan(x-a)}{(x-a)}=1[/tex]
.
DIKETAHUI[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=[/tex]
.
DITANYATentukan nilai limitnya.
.
PENYELESAIANCek dengan substitusi langsung.
[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=\frac{4(\frac{\pi}{2}-\pi)cos^2(\frac{\pi}{2})}{\pi(\pi-2(\frac{\pi}{2}))tan(\frac{\pi}{2}-\frac{\pi}{2})}[/tex]
[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=\frac{0}{0}[/tex]
.
Karena substitusi langsung menghasilkan bentuk tak tentu, maka kita perlu ubah bentuknya terlebih dahulu dengan menggunakan identitas :
[tex]cos\theta=sin\left ( \frac{\pi}{2}-\theta \right )[/tex]
[tex]sin(-\theta)=-sin\theta[/tex]
.
[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=\frac{4}{\pi} \lim_{x \to \frac{\pi}{2}} \frac{(x-\pi)sin^2(\frac{\pi}{2}-x)}{(\pi-2x)tan(x-\frac{\pi}{2})}[/tex]
[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=\frac{4}{\pi} \lim_{x \to \frac{\pi}{2}} \frac{(x-\pi)[sin-(x-\frac{\pi}{2})]^2}{(\pi-2x)tan(x-\frac{\pi}{2})}[/tex]
[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=\frac{4}{\pi} \lim_{x \to \frac{\pi}{2}} \frac{(x-\pi)[-sin(x-\frac{\pi}{2})]^2}{(\pi-2x)tan(x-\frac{\pi}{2})}[/tex]
[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=\frac{4}{\pi} \lim_{x \to \frac{\pi}{2}} \frac{(x-\pi)sin^2(x-\frac{\pi}{2})}{-2(x-\frac{\pi}{2})tan(x-\frac{\pi}{2})}[/tex]
[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=-\frac{2}{\pi} \lim_{x \to \frac{\pi}{2}} (x-\pi)\times \lim_{x \to \frac{\pi}{2}} \frac{sin(x-\frac{\pi}{2})}{(x-\frac{\pi}{2})}\times\lim_{x \to \frac{\pi}{2}} \frac{sin(x-\frac{\pi}{2})}{tan(x-\frac{\pi}{2})}[/tex]
[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=-\frac{2}{\pi}\times(\frac{\pi}{2}-\pi)\times1\times1[/tex]
[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=-\frac{2}{\pi}\times-\frac{\pi}{2}[/tex]
[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=1[/tex]
.
KESIMPULAN[tex]Nilai~dari~\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}~adalah~\boldsymbol{1}.[/tex]
.
PELAJARI LEBIH LANJUTLimit trigonoemtri : https://brainly.co.id/tugas/32389794Limit trigonometri : https://brainly.co.id/tugas/30308496Limit trgonometri : https://brainly.co.id/tugas/30292421.
DETAIL JAWABANKelas : 11
Mapel: Matematika
Bab : Limit Fungsi
Kode Kategorisasi: 11.2.8
Kata Kunci : limit, fungsi, trigonometri.
7. soal integral kelas xii
PERTANYAAN
1. ∫ (4x+2) (5 - 1/2 x) dx = ...
2. Diketahui F'(x) = 3x^2+4x-5 dan F(2) = 18. Jika F'(x) adalah turunan pertama F(x), maka persamaan F(x)
JAWABAN
1) ∫ (4x+2) (5 - ½x) dx
= ∫ (-2x² + 19x + 10) dx
= -(2/3)x³ + (19/2)x² + 10x + c
2) F'(x) = 3x^2+4x-5
F(x) = ∫ (3x² + 4x – 5) dx
= x³ + 2x – 5x + c
F(2) = 2³ + 2(2) – 5(2) + c = 18
8 + 4 – 10 + c = 18
c = 16
F(x) = x³ + 2x – 5x + 16
yang mananyaa yg mau dikerjain?-__-
kalo masalah integral itu invers dari turunan laah..
seperti [tex] \int\limits^a_b f({x}) \ dx = F(x) + C[/tex]
f'x= f(x)
Jadi kalo masalah integral sin cos ituu, pakai rumus integral fungsi trigonometri:
saya beri satu contoh saja yaah..
integral sinx dx = -cosx+C
[tex] \int\limits^ \frac{3 \pi }{4} _b(2-4sin ^{2} {x}) \, dx = 2-4 sin^{2} x = 2-4(1- \frac{cos2x}{2}) = 2- 2(1-cos2x) = 2cos2x[/tex]
ituu saja yaa contohnyaa
8. soal matematika matriks kelas xii
semoga membantu.........0
9. soal matematika kelas XII
Semoga membantu......
10. soal try out kelas XII
[tex] \frac{1}{8} ^{- \frac{1}{3} } + 4^{ \frac{3}{2} } - 81^{ \frac{3}{4} } = 2^{-3.- \frac{1}{3} } + 2^{2. \frac{3}{2} } - 3^{4. \frac{3}{4} } = 2 + 2^{3} - 3^{3} = 2 + 8 - 27[/tex] = -17
Semoga Membantu...
11. soal limitkelas XII
[tex]Nilai~dari~\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}~adalah~\boldsymbol{\frac{3}{4}}.[/tex]
PEMBAHASANNilai limit dari suatu fungsi dapat kita cari dengan langsung mensubstitusikan nilai x ke dalam fungsinya. Jika hasilnya ada maka berarti itulah nilai limitnya.
[tex]\lim_{x \to c} f(x)=f(c)[/tex]
Akan tetapi jika hasil substitusi langsung menghasilkan bentuk tak tentu [tex]\frac{0}{0}~atau~\frac{\infty}{\infty}[/tex] maka harus dilakukan manipulasi aljabar atau menggunakan aturan l'hospital. Dengan menggunakan aturan l'hospital, nilai limit fungsi dapat dicari dengan rumus :
[tex]\lim_{x \to c} \frac{f(x)}{g(x)}=\frac{f'(c)}{g'(c)},~~~~dengan~f'(c),~g'(c)\neq 0[/tex]
Operasi pada limit adalah sebagai berikut :
[tex]\lim_{x \to c} f(x)=f(c)[/tex]
[tex]\lim_{x \to c} kf(x)=k\lim_{x \to c} f(x)[/tex]
[tex]\lim_{x \to c} [f(x)\pm g(x)]=\lim_{x \to c} f(x)\pm\lim_{x \to c} g(x)[/tex]
[tex]\lim_{x \to c} [f(x)\times g(x)]=\lim_{x \to c} f(x)\times\lim_{x \to c} g(x)[/tex]
[tex]\lim_{x \to c} \left [ \frac{f(x)}{g(x)} \right ]=\frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}[/tex]
[tex]\lim_{x \to c} \left [ f(x) \right ]^n=\left [ \lim_{x \to c} f(x) \right ]^n[/tex]
Rumus untuk limit fungsi trigonometri :
[tex]\lim_{x \to 0} \frac{sinax}{bx}=\lim_{x \to 0} \frac{tanax}{bx}=\frac{a}{b}[/tex]
[tex]\lim_{x \to 0} \frac{ax}{sinbx}=\lim_{x \to 0} \frac{ax}{tanbx}=\frac{a}{b}[/tex]
[tex]\lim_{x \to a} \frac{sin(x-a)}{(x-a)}=\lim_{x \to a} \frac{tan(x-a)}{(x-a)}=1[/tex]
.
DIKETAHUI[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=[/tex]
.
DITANYATentukan nilai limitnya.
.
PENYELESAIANCek dengan substitusi langsung.
[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{\left ( \frac{\pi}{4}-\frac{\pi}{4} \right )sin\left ( 3(\frac{\pi}{4})-\frac{3\pi}{4} \right )}{2(1-sin2(\frac{\pi}{4}))}[/tex]
[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{0}{0}[/tex]
.
Karena substitusi langsung menghasilkan bentuk tak tentu, maka kita perlu ubah bentuknya terlebih dahulu dengan menggunakan identitas :
[tex]sin\theta=cos\left ( \frac{\pi}{2}-\theta \right )[/tex]
[tex]cos(-\theta)=cos\theta[/tex]
[tex]cos2\theta=1-2sin^2\theta[/tex]
.
[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{1}{2}\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin3\left ( x-\frac{\pi}{4} \right )}{1-cos[-(2x-\frac{\pi}{2})]}[/tex]
[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{1}{2}\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin3\left ( x-\frac{\pi}{4} \right )}{1-cos(2x-\frac{\pi}{2})}[/tex]
[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{1}{2}\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin3\left ( x-\frac{\pi}{4} \right )}{1-cos2(x-\frac{\pi}{4})}[/tex]
[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{1}{2}\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin3\left ( x-\frac{\pi}{4} \right )}{1-[1-2sin^2(x-\frac{\pi}{4})]}[/tex]
[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{1}{2}\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin3\left ( x-\frac{\pi}{4} \right )}{2sin^2(x-\frac{\pi}{4})}[/tex]
[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{1}{4}\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )}{sin(x-\frac{\pi}{4})}\times\lim_{x \to \frac{\pi}{4}} \frac{sin3\left ( x-\frac{\pi}{4} \right )}{sin(x-\frac{\pi}{4})}[/tex]
[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{1}{4}\times1\times3[/tex]
[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{3}{4}[/tex]
.
KESIMPULAN[tex]Nilai~dari~\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}~adalah~\boldsymbol{\frac{3}{4}}.[/tex]
.
PELAJARI LEBIH LANJUTLimit trigonometri : https://brainly.co.id/tugas/30308496Limit trgonometri : https://brainly.co.id/tugas/30292421Limit trigonometri : https://brainly.co.id/tugas/30243881.
DETAIL JAWABANKelas : 11
Mapel: Matematika
Bab : Limit Fungsi
Kode Kategorisasi: 11.2.8
Kata Kunci : limit, fungsi, trigonometri
12. soal limit tak hinggakelas XII
Jawaban:
Jawabannya D.2
.
.
semoga membantu
13. Soal matriks kelas XII
biasa kan mikir dan belajar terus dengan giat
14. Soal matematika integral kelas XII
4 d. 3x-4
f(x) = n.a x pangkat n-1.
= -4.3x pangkat -4-1
=-12xpangkat 5.
untuk soal nomer 2. sama rumusnya kayak gini..
15. tolong ya soal kkpi
1. C
2. D
3. C
4. E
5. D
6. E
7. B
8. D
9. B
10. C
11. D
12. C
13. D
14. A
Posting Komentar untuk "Soal Uas Kkpi Kelas Xii"