Lompat ke konten Lompat ke sidebar Lompat ke footer

20 Contoh Soal Program Linear


20 Contoh Soal Program Linear

Contoh soal program linear

1. Contoh soal program linear


Seorang pedagang sepeda ingin membeli 25 sepeda untuk persediaan. Ia ingin membeli sepeda gunung dengan harga Rp 1.500.000,00 per buah dan sepeda balap dengan harga Rp 2.000.000,00 per buah. Ia berencana tidak akan mengeluarkan uang lebih dari Rp 42.000.000,00. Jika keuntungan sebuah sepeda gunung Rp 500.000,00 dan sebuah sepeda balap Rp 600.000,00, maka keuntungan maksimum yang diterima pedagang adalah …

2. contoh soal program linear​


Jawaban:

Gambarlah garis ax + by = c pada bidang kartesius, cara lebih lengkapnya dapat dilihat di sini.

Garis Lurus

Ambil sembarang titik (x1, y1) di luar garis ax + by = c kemudian hitung nilai ax1 + by1 dan bandingkan dengan nilai pada ruas kanan pertidaksamaan (nilai c).

Jika nilai ax1 + by1 ≤ c maka daerah yang memuat titik (x1, y1) adalah daerah penyelesaian berada di bawah garis ax + by = c.

Daerah layak kurang dari

Jika ax1 + by1 ≥ c maka daerah yang memuat titik (x1, y1) adalah daerah penyelesaian berada di atas pertidaksamaan ax + by = c.

Daerah Layak Penyelesaian Sistem Persamaan Linear

Contoh cara menentukan daerah himpunan penyelesaian dari sistem pertidaksamaan linear dua peubah. Diberikan sebuah sistem pertidaksamaan linear yang terdiri dari empat pertidaksamaan. Perhatikan sistem pertidaksamaan berikut.

x ≥ 0

y ≥ 0

x + y ≤ 7

x + 3y ≤ 15

Cari tahu daerah yang memenuhi sistem pertidaksamaan linear di atas.

Daerah yang memenuhi pertidaksamaan x + y ≤ 7.

Penyelesaian Daerah Layak Kurang Dari

Daerah yang memenuhi pertidaksamaan x + 3y ≤ 15.

Penyelesaian daerah layak kurang dari

Menentukan daerah yang memenuhi gabungan dari empat sistem pertidaksamaan linear: x ≥ 0, y ≥ 0, x + y ≤ 7, dan x + 3y ≤ 15.

Materi Program Linear Matematika SMA


3. 10 contoh soal dan pembahasan tentang program linear untuk kelas 11 yang singkatContoh soal program linear


Jawaban:

Soal Nomor 1

Perhatikan grafik berikut!

Daerah yang diarsir merupakan penyelesaian dari pertidaksamaan ⋯⋅

A. 3y+x≥−3

B. 3y+x≤−3

C. 3y+x≤3

D. 3x+y≥−3

E. 3y–x≤3 

Penyelesaian

Soal Nomor 2

Daerah penyelesaian dari sistem persamaanlinear

2x+y≤6;x+3y≥6;x≥0;y≥0,x,y∈R

adalah ⋯⋅

A. I          B. II         C. III          D. IV          E. V

Penyelesaian

Soal Nomor 3

Perhatikan grafik di bawah ini.

Daerah penyelesaian dari sistempertidaksamaan 3x+2y≤36;x+2y≥20;x≥0 dan y≥0pada gambar di atas adalah ⋯⋅

A. V          B. IV           C. III          D. II           E. I

Penyelesaian

Soal Nomor 4

Perhatikan gambar berikut!

Daerah penyelesaian sistempertidaksamaan 5x+6y≥30;−2x+y≤0,y≥2ditunjukkan oleh daerah ⋯⋅

A. I       B. II       C. III        D. IV       E. V

Penyelesaian

Soal Nomor 5

Daerah penyelesaian dari 

{x+2y≥2−3x+y≤−3y≤4

ditunjukkan oleh grafik ⋯⋅

Penyelesaian

Soal Nomor 6

Sistem pertidaksamaan linear untuk daerah yang diarsir pada gambar di bawah adalah ⋯⋅

A. 3x+4y≥12;3x+y≤6;x≥0;y≥0

B. 3x+4y≤12;3x+y≥6;x≥0;y≥0

C. 3x+4y≥12;x+y≤6;x≤0;y≥0

D. 3x+4y≤12;3x+y≥6;x≥0;y≥0

E. 3x+4y≥12;3x+y≥6;x≥0;y≥0

Penyelesaian

Soal Nomor 7

Daerah yang diarsir pada grafik di bawah merupakan himpunan penyelesaian sistempertidaksamaan ⋯⋅

A. 5x+4y≤200;2x+y≤80;x≥0,y≥0

B. 5x+4y≥200;x+2y≤80;x≥0,y≥0

C. 4x+5y≤200;2x+y≤80;x≥0,y≥0

D. 4x+5y≤200;2x+y≥80;x≥0,y≥0

E. 5x+4y≤200;x+2y≤80;x≥0,y≥0

Penyelesaian

Soal Nomor 8

Daerah penyelesaian yang memenuhi sistempertidaksamaan x≥2;y≤8,x–y≤2berbentuk ⋯⋅

A. segitiga lancip

B. segitiga sama sisi

C. segitiga sebarang

D. segitiga tumpul sama kaki

E. segitiga siku-siku sama kaki

Penyelesaian

Soal Nomor 9

Perhatikan gambar berikut ini!

Nilai maksimum untuk fungsi objektif P=3x+5y adalah ⋯⋅

A. 15          B. 16         C. 17          D. 18          E. 19

Penyelesaian

Soal Nomor 10

Perhatikan grafik berikut!

Nilai minimum dari Z=2x+5y dari daerah yang diarsir adalah ⋯⋅

A. 6        B. 8        C. 10          D. 11         E. 14


4. contoh soal dan jawaban program linear ​


Jawab:

1. Nilai maksimum f(x, y) = 5x + 4y yang memenuhi pertidaksamaan x + y ≤ 8, x + 2y ≤ 12, x ≥ 0, dan y ≥ 0 adalah ...

a. 24

b. 32

c. 36

d. 40

e. 60

PEMBAHASAN:

- x + y ≤ 8

ketika x = 0, maka y = 8 .... (0, 8)

ketika y = 0, maka x = 8 .... (8, 0)

- x + 2y ≤ 12

ketika x = 0, maka y = 6 .... (0, 6)

ketika y = 0, maka x = 12 .... (12, 0)

Sehingga, grafik dari pertidak samaan di atas adalah:

Kita cari dulu titik B, yaitu titik potong dua buah garis, yaitu:

subtitusikan y = 4 dalam x + y = 8

x + 4 = 8

x = 4 .... (4, 4)

Jadi, nilai fungsi obyektifnya adalah:

f(x, y) = 5x + 4y

- titik A (0, 6)

5x + 4y = 5.0 + 4.6 = 24

- titik B (4, 4)

5x + 4y = 5.4 + 4.4 = 20 + 16 = 36

- titik C (8, 0)

5x + 4y = 5.8 + 4.0 = 40

Jadi, nilai maksimumnya adalah 40.

JAWABAN: D

Jawab:

Penjelasan dengan langkah-langkah:

Nilai maksimum f(x, y) = 5x + 4y yang memenuhi pertidaksamaan x + y ≤ 8, x + 2y ≤ 12, x ≥ 0, dan y ≥ 0 adalah ...

a.    24

b.    32

c.    36

d.    40

e.    60

PEMBAHASAN:

-    x + y ≤ 8

ketika x = 0, maka y = 8 .... (0, 8)

ketika y = 0, maka x = 8 .... (8, 0)

-    x + 2y ≤ 12

ketika x = 0, maka y = 6 .... (0, 6)

ketika y = 0, maka x = 12 .... (12, 0)  

Kita cari dulu titik B, yaitu titik potong dua buah garis, yaitu:

subtitusikan y = 4 dalam x + y = 8

x + 4 = 8

x = 4 .... (4, 4)

Jadi, nilai fungsi obyektifnya adalah:

f(x, y) = 5x + 4y

-    titik A (0, 6)

     5x + 4y = 5.0 + 4.6 = 24

-    titik B (4, 4)

     5x + 4y = 5.4 + 4.4 = 20 + 16 = 36

-    titik C (8, 0)

     5x + 4y = 5.8 + 4.0 = 40

Jadi, nilai maksimumnya adalah 40.

JAWABAN: D

Sehingga, grafik dari pertidaksamaan di atas adalah:


5. contoh soal matematika program linear


Pada pembahasan ini akan diberikan 10 soal program linear beserta pembahasannya. Soal-soal tersebut mencakup latihan memodelkan soal cerita ke dalam kalimat matematika,menggambar daerah selesaian dan menentukan nilai optimum dengan menggunakan uji titik pojok dan garis selidik. Selain itu, ada soal yang membahas mengenai kasus kusus dalam permasalahan program linear, seperti titik pojok penyebab nilai optimum yang koordinatnya memuat bilangan bukan cacah, akan tetapi fungsi objektifnya mensyaratkan bilangan cacah. Berikut ini satu dari kesepuluh soal tersebut.Seorang pedagang sepeda ingin membeli 25 sepeda untuk persediaan. Ia ingin membeli sepeda gunung dengan harga Rp 1.500.000,00 per buah dan sepeda balap dengan harga Rp 2.000.000,00 per buah. Ia berencana tidak akan mengeluarkan uang lebih dari Rp 42.000.000,00. Jika keuntungan sebuah sepeda gunung Rp 500.000,00 dan sebuah sepeda balap Rp 600.000,00, maka keuntungan maksimum yang diterima pedagang adalah …Pembahasan Tanpa membuat tabel, kita dapat memodelkan kendala-kendala dari permasalahan tersebut sebagai berikut.

6. Contoh dan soal pembahasan program linear


Program linear adalah suatu metode penentuan nilai optimum dari suatu persoalan linear. Nilai optimum (maksimal atau minimum) diperoleh dari nilai dalam suatu himpunan penyelesaiaan persoalan linear. Di dalam persoalan linear terdapat fungsi linear yang bisa disebut sebagai fungsi objektif. Persyaratan, batasan, dan kendala dalam persoalan linear merupakan sistem pertidaksamaan linear.

7. contoh soal program linear dan pembahasanya


Semoga bermanfaat ya

8. buat lah 5 contoh soal program linear


lebih dari 5 soal program linear
pembahasan agar lebih clear mengerjakan soal dari ika ayu
Seorang pedagang sepeda ingin membeli 25 sepeda untuk persediaan. Ia ingin membeli sepeda gunung dengan harga Rp 1.500.000,00 per buah dan sepeda balap dengan harga Rp 2.000.000,00 per buah. Ia berencana tidak akan mengeluarkan uang lebih dari Rp 42.000.000,00. Jika keuntungan sebuah sepeda gunung Rp 500.000,00 dan sebuah sepeda balap Rp 600.000,00, maka keuntungan maksimum yang diterima pedagang adalah …Pembahasan Tanpa membuat tabel, kita dapat memodelkan kendala-kendala dari permasalahan tersebut sebagai berikut.x + y ≤ 25,
1.500.000x + 2.000.000y ≤ 42.000.000,
x ≥ 0, y ≥ 0,
x dan y bilangan cacah.Dengan fungsi objektifnya adalah f(x, y) = 500.000x + 600.000y. Sehingga apabila digambarkan, daerah selesaiannya akan nampak seperti berikut.Selanjutnya kita tentukan titik potong grafik persamaan 1.500.000x + 2.000.000y = 42.000.000 dan x + y = 25.Sehingga,Diperoleh,Selanjutnya kita lakukan uji titik pojok ke dalam fungsi objektifnya.Jadi, keuntungan maksimum yang diterima pedagang adalah Rp 13.400.000,00.

9. Contoh soal dan jawaban program linear


Luas daerah parkir 1.760 m2. Luas rata-rata untuk mobil kecil 4 m2 dan mobil besar 20 m2. Daya tampung maksimum hanya 200 kendaraan. Biaya parkir mobil kecil Rp 1.000,00/jam dan mobil besar Rp 2.000,00/jam. Buatlah model matematika nya & tent. fungsi obyektifnya !

Membuat model matematika dari soal cerita di atas

Misal:
mobil kecil sebagai x, mobil besar sebagai y.

Luas parkir 1760 m2:
4x + 20 y ≤ 1760 disederhanakan menjadi
x + 5y ≤ 440.......(Garis I)

Daya tampung lahan parkir 200 kendaraan:
x + y ≤ 200 ..............(Garis II)

Fungsi objektifnya adalah hasil parkiran:
f(x, y) = 1000 x + 2000 y 

10. contoh soal program linear dan pembahasannya


Seorang pedagang sepeda ingin membeli 25 sepeda untuk persediaan. Ia ingin membeli sepeda gunung dengan harga Rp 1.500.000,00 per buah dan sepeda balap dengan harga Rp 2.000.000,00 per buah. Ia berencana tidak akan mengeluarkan uang lebih dari Rp 42.000.000,00. Jika keuntungan sebuah sepeda gunung Rp 500.000,00 dan sebuah sepeda balap Rp 600.000,00, maka keuntungan maksimum yang diterima pedagang adalah …Pembahasan Tanpa membuat tabel, kita dapat memodelkan kendala-kendala dari permasalahan tersebut sebagai berikut.x + y ≤ 25,1.500.000x + 2.000.000y ≤ 42.000.000,x ≥ 0, y ≥ 0,x dan y bilangan cacah.Dengan fungsi objektifnya adalah f(x, y) = 500.000x + 600.000y. Sehingga apabila digambarkan, daerah selesaiannya akan nampak seperti berikut.Selanjutnya kita tentukan titik potong grafik persamaan 1.500.000x + 2.000.000y = 42.000.000 dan x + y = 25.Sehingga,Diperoleh,Selanjutnya kita lakukan uji t itik pojok ke dalam fungsi objektifnya.Jadi, keuntungan maksimum yang diterima pedagang adalah Rp 13.400.000,00.1. Tanah seluas 10.000 m² akan dibangun rumah tipe A dan tipe B. Untuk rumah tipe A.diperlukan 100 m² dan tipe B diperlukan 75 m². Jumlah rumah yang dibangun paling banyak 125 unit. Keuntungan rumah tipe A adalah Rp 6.000.000,00/unit dan tipe B adalah Rp 4.000.000,00/unit. Keuntungan maksimum yang dapat diperoleh dari penjualan rumah tersebut adalah ........

A . Rp 550.000.000,00 D . Rp 800.000.000,00

B . Rp 600.000.000,00 E . Rp 900.000.000,00

C . Rp 700.000.000,00
 Jawab:
 misal:
x = rumah tipe A
y = rumah tipe B
 100x + 75y ≤ 10.000 ⇒dibagi 25   4x + 3y ≤ 400 …..(1)
x + y ≤ 125 …..(2)
Keuntungan maksimum : 6000.000 x + 4000.000 y =…?

 Mencari keuntungan maksimum dengan mencari titik-titik pojok dengan menggunakan

sketsa grafik:

Grafik 1 :

4x + 3y ≤ 400

titik potong dengan sumbu X jika y=0 maka x =

Titik potongnya (100 , 0)

 Titik potong dengan sumbu Y jika x = 0 maka y =

Titik potongnya (0 , 133,3)
 
400/4 = 100
Titik potongnya (100 , 0)
400/3 = 133,3
Titik potongnya (0 , 133,3)






11. contoh soal program linear dan jawaban


(1,1) (1,2) m =2-1/1-1=1
Y-1=1(x-1)
Y-1=x-1
y=x

12. contoh soal program linear dan pembahasan


itu adalah contoh soal linear majemuk dengan tiga dan empat variabel
jangan lupa folback

13. Contoh Soal cerita program linear


Soal 1 : Menentukan Harga Satuan Aini, Nia, dan Nisa pergi bersama-sama ke toko buah. Aini membeli 2 kg apel, 2 kg anggur, dan 1 kg jeruk dengan harga Rp 67.000,00. Nia membeli 3 kg apel, 1 kg anggur, dan 1 kg jeruk dengan harga Rp 61.000,00. Nisa membeli 1 kg apel, 3 kg anggur, dan 2 kg jeruk dengan harga Rp. 80.000,00. Tentukan harga 1 kg apel, 1 kg anggur, dan 4 kg jeruk.

soal

Aini, Nia, dan Nisa pergi bersama-sama ke toko buah. Aini membeli 2 kg apel, 2 kg anggur, dan 1 kg jeruk dengan harga Rp 67.000,00. Nia membeli 3 kg apel, 1 kg anggur, dan 1 kg jeruk dengan harga Rp 61.000,00. Nisa membeli 1 kg apel, 3 kg anggur, dan 2 kg jeruk dengan harga Rp. 80.000,00. Tentukan harga 1 kg apel, 1 kg anggur, dan 4 kg jeruk.


14. contoh soal program linear dan pembahasan​


Jawaban:

diketahui

fk

x+y≤14

x+2y≤18

fo

4x+y

jwbn di dict


15. contoh soal matematika program linear


Contoh soal matematika program linear dalam menentukan harga benda


Video Terkait


Posting Komentar untuk "20 Contoh Soal Program Linear"